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NOMENCLATURE 

p,W1,; 
speciIic heat ; 
defined by equation (12) ; 
latent heat; 
surface heat flux ; 
melting or solidification distance : 
time ; 
initial temperature; 
melting temperature; 
temperature, T - T,; 
transform variable, defined by equation 
(1) and equation (2) ; 
distance ; 
defined by equation (11) ; 
thermal diffusivity ; 

da,/dV, IX+; 
2 V,‘,,lPJ ; 
density. 

Subscripts 
m, 
s. 

evaluated at the phase change front ; 
evaluated at the surface. 

INTRODUCTION 

SINCE the solution to a phase change problem is difficult to 
obtain, it is customary to introduce the simplification that 
the thermal properties of the liquid and solid states are 
constant. For modest temperature ranges, this assumption 
appears to be reasonable; however, when the temperature 
differences are large, the validity of this approach is question- 
able. The purpose of the present investigation is to determine 
quantitatively, the effect of the variable property assumption 
in a phase change system. 

In what follows the heat balance integral method is 
amended to include phase change problems with tempera- 
ture dependent thermal properties in a semi-infinite body 
initially at its fusion temperature. Melting and freezing 
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situations are considered for various types of surface 
temperature functions, and generalized expressions are 
derived for the phase change location which, in turn, 
determines the requisite temperature profiles. For a quanli- 
tative evaluation of the effect of the variable property 
assumption. the semi-infinite body is assumed to be copper 
since the thermal properties of its liquid and solid states are 
well documented in [4]. 

ANALYSIS 

For a semi-infinite body initially at its melting or freezing 
point, T, = 0, and with temperature dependent thermal 
properties, analysis of the differential system is expedited by 
the transformation 

and 

V, = 
s’ 

’ p,c, dT 
0 

(1) 

v, = TPJ (2) 

where the negative and positive designations refer to melting 
or freezing, respectively. Consequently, the heat conduction 
equation for each phase is transformed into : 

; a&J! = 2 
[ 1 

o,<x<s (3) 
Y 

V,(O, t) = v,, 

V,(x, t) = F PmL SQX<X 

VI = V,,, = Oat x = S 

(4) 

(5) 

(6) 

av, 
ax I=s= 

-A, f (for melting) 

a5 - = B 9 
ax x=s 1 dt 

(for freezing). 

(74 

(7b) 

Henceforth, hyphenated equation numbers are employed 
to distinguish the melting and freezing processes. 

By application of the principles of the heat balance 
integral method, [l-3], equation (3) is, in turn, reduced to 
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an ordinary differential equation from which the following 

expressions at the fusion line are extracted : 

To obtain an explicit expression for the temperature, Ti. 

a polynomial expansion for the transformed variable Vi, 

must be chosen. Accordingly. a quadratic expression for the 

transformed variable Vi is now assumed, 

V,(x, t) = a(x - s) t b(x - sy t c (9) 

where the constants a, b and c are readily determined from 

equations (4) (6) and (8). Hence, equation (9) simplifies to 
the expression 

Vi 

---=L 

I - J[l t p(l - wA,)](x - s) 

%A 1 (1 - WA,) 1 s 
Jr1 t A1 - WA,)1 t y 

I1 - WA,) 2 1 

(x - v 
S 

(104 

where 

and 

After performing the required substitutions, the amended 

form of equation (3) reduces to the non-linear differential 

equation for the fusion line location 

with 

1 - 41 t PC1 - WA,)] 
Z=--- 

(1 - WA,) 

or 

A(~3 t Y) = 
- Y dt 

12a 

where 
(lib) 

y _ 1 - d1 - ~(1 + r4l)l 
(1 t yBJ 

Equations (1 la) and (1 lb) are the non-linear differential 

equations of Bernoulli’s type and they have the following 

solutions : 

1 2 
D,=6------, 

(1 - WA,) D2=6-(1-x 

f 

1 ’ _ ,$P - 141 + YBJI_~ dt 

(1 + YB,) 

’ 1 - dC1 - A1 t YW 
(1 t ~4) 1 

with 

1 
D,=6_--- 

(1 t 74) 

2 
D,=6-------. 

(1 t yB,) 

(I 2a) 

(1W 

Vl 
-[ 

I - J[l - /I(,(1 + :jRr)] (S - X) 

__ __ Elm i B (1 + YB,) 1 S 

1 - J[l - ~(,(l t yB,)]l (S - d2 _ .._.__~.__ 
(1 t ~4) 

j-7 UOW 

It should be noted that the terms p and p(s shown in the 

preceding equations have the same algebraic expression, 
however numerically they are different due to the term, VI,. 

MELTING OF A SEMI-INFINITE SOLID 

(A) Constant surface temperature, T,, = constant 
When the surface temperature, T,,, is considered to be ,I 

constant, p in turn becomes constant and, equation t I2a) 
simplifies to the general expression 
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12u 
[ 
P i- 

1 - J[l -t /J(l - WA,)] * 
IS 

[ 

S= 
(1 - ~4,) 1 

[ 6 t p _t $1 -+ ~(1 - WA,)] I 1 
(13) 

(1 - WA,) 

In addition, the surface heat flux, qi., is for any situation 

ad4 1 - J[l t ~(1 - WA,)] 
S (1 - WA,) 1 (14) 

For comparison purposes, the constant physical property 
case, corresponds to the situation of, 1 - WA, = 1, where 
the thermal properties are evaluated at the fusion tempera- 
ture, T,. Incidentally, direct substitution of the requirement, 
1 - WA, = 1, into equation (13) produces the same results 
as obtained in [l]. 

(B) Linear variation of surface temperature, Ti, = a,, t a,t 
The physical properties are treated as linear functions of 

temperature, i.e. 

plcl = p,ci,(l -t bT,), a,, = x1,(1 t gTi3. 

In general terms, equation (12a) may be expressed as 

S J3 -= 
k.l%.l t ~ t J[l t ~(1 - wAdI - 1 

< (1 - WA,) 1 
x (E,t t E,t2 t Eat3 t E,t4 t E,t’ t E,t6) A 

’ D, -____ 
(1 - WA,) [ 

H,(F, t F,t t F,t')* - [(1 -t ga,)t 

t ~ga,P] - H,(2F,t t F,) JCF, t F,t t F,?) 

t H, sin-’ 
2F,t t F, 

- 
J(F? 7 4F,F,) 1 

- HrF8 -+ H,F,(JFJ 

- H3 sin-’ (15) 

The explicit form for the constant terms E,, F, and H, are 
shown in [S]. 

FREEZING OF A SEMI-INFINITE LIQUID 

(A) Constant surface temperature, T,, = constant 
Accordingly, equations (12b) can be expressed in general 

form as 

lza 

Is 
1 - Jr1 - PA1 -+ YWI _ ~ 

s= [ (1 + Y4) 1 s 
t + 

6-A- 
1 - ,/[I - y,(l -t yB,)] 

(1 -t ~4) 1 . 
(16) 

It should be noted that when, (1 -t yB,) = 1.0, the results 
reduce to the same conclusions obtained in [ 11. 

(B) Linear variation of surface temperature, T,, = a,, -t art 
When the thermophysical equations are successfully 

approximated by linear function of temperature, i.e. 

equation (12b) can be expressed in general terms as 

S J3 -= 
2 Jh 

6-H- 
1 - x/Cl - ~4 t ~41 

(1 + ~4) 

x (E,t t E,t* t E,t’ t E,r4 t E,t’ t E,P) 
i 

D4 -~- 
(1 t YBI) 

t F,t t F,+ 

- [(l t ga,)t t igaIt’] - Hz(2F9 t FJ ,,hFo t Fit 

2F,t t F, 
t F,t’) t Hssin-r- 

,/(F, - 4F,F3 - HIF’ 
i 

t H,F,(,/F,) - H, sin-’ - (17) 

RESULTS AND CONCLUSIONS 

As presented in analysis section, the solution to the non- 
linear phase change problem with the linear boundary 
conditions is obtained via the application of the heat balance 
integral method. A quadratic expression for the transformed 
variable V,(x, t) is assumed, equation (9), and expressions 
are obtained for the phase change location. The question of 
increasing the order of the approximating polynomial has 
been discussed in [2], and it should be noted the conclusion 
that a higher order polynomial does not necessarily yield a 
more accurate solution. also applies to the cases considered 
here. Though not reported in the present investigation, 
numerical results were obtained for a cubic expression which 
produced very little difference from those thus far presented, 
When a polynomial approximation of higher degree than 
the second is utilized, a parametric representation for S(t) is 
unobtainable; however the desired information may be 
computed numerically. 

As shown in [5], the fusion line location and the internal 
temperature were evaluated for a variety of boundary con- 
ditions. Figure 1 may be regarded as representative of the 
results obtained. Quantitatively, it appears that when the 
thermal properties are computed at the fusion temperature, 
T,,, the constant property solution is rather close to the 
variable property solution, for the selected surface tempera- 
ture variations. This effect is indicated as an intermittent 
dashed curve for the modified equation (12a), i.e. equation 
(15). 

It seems, therefore, in this one case that the thermal para- 
meters for the variable property case could be approximated 
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---- Equatlon(l5) 

-.- Equatmn (15) 

FIG. 1. Melting ofcopper at T,, = 0” and T,, = 400 t 2000 t. 

rather easily by the simpler constant thermal physical 
property condition l’or materials having linear thermal 
conductivity and volumetric specific heat functional re- 
lationships with temperature. 
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NOMENCLATURE 

specific heat ; 
duct diameter [m] ; 
sphere diameter [m] ; 
function defined by equation (4) [W/m’ K] : 
Grashof number ; 
beat transfer coefficient for convection [W/m’ K] ; 
effective heat transfer coefftcient [W/m’ K] ; 
heat transfer coeflicient for radiation [W/m2 K]: 
thermal conductivity [W/m K] ; 
Nusselt number, &D/k; 
Prandtl number: 
rate of heat transfer by convection [W] ; 
rate of heat transferay conduction [W] : 

Q 
l7.R 
Re, 
R &, 
‘RSii, 
t ‘l, 
t I”. 
t 
;;’ 

rate of heat transfer by radiation [W] : 
radius of the sphere [m] : 
Reynolds number. (UpD/p); 
rotational Reynolds number, VD/v; 
radius of support shaft [m]: 
air temperature rC] ; 
sphere mean temperature PC] ; 
sphere surface temperature [“C] ; 
absolute temperature of the air in the boundary 
layer [K] ; 

L absolute air temperature [K] ; 
T ItC, sphere mean absoiute temperature [K] : 
r, sphere surface absolute temperature [K]. 


